Nonlinear Control

Lecture # 4
Stability of Equilibrium Points

Basic Concepts

$$\dot{x} = f(x)$$

f is locally Lipschitz over a domain $D \subset \mathbb{R}^n$

Suppose $\bar{x} \in D$ is an equilibrium point; that is, $f(\bar{x}) = 0$

Characterize and study the stability of \bar{x}

For convenience, we state all definitions and theorems for the case when the equilibrium point is at the origin of \mathbb{R}^n ; that is, $\bar{x}=0$. No loss of generality

$$y = x - \bar{x}$$

$$\dot{y} = \dot{x} = f(x) = f(y + \bar{x}) \stackrel{\text{def}}{=} g(y), \text{ where } g(0) = 0$$

Definition 3.1

The equilibrium point x = 0 of $\dot{x} = f(x)$ is

■ stable if for each $\varepsilon > 0$ there is $\delta > 0$ (dependent on ε) such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \varepsilon, \quad \forall \ t \ge 0$$

- unstable if it is not stable
- lacksquare asymptotically stable if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0$$

Scalar Systems (n = 1)

The behavior of x(t) in the neighborhood of the origin can be determined by examining the sign of f(x)

The ε - δ requirement for stability is violated if xf(x)>0 on either side of the origin

The origin is stable if and only if $xf(x) \leq 0$ in some neighborhood of the origin

The origin is asymptotically stable if and only if xf(x)<0 in some neighborhood of the origin

Asymptotically Stable

Globally Asymptotically Stable

Definition 3.2

Let the origin be an asymptotically stable equilibrium point of the system $\dot{x}=f(x)$, where f is a locally Lipschitz function defined over a domain $D\subset R^n$ ($0\in D$)

■ The region of attraction (also called region of asymptotic stability, domain of attraction, or basin) is the set of all points x_0 in D such that the solution of

$$\dot{x} = f(x), \quad x(0) = x_0$$

is defined for all $t \ge 0$ and converges to the origin as t tends to infinity

■ The origin is globally asymptotically stable if the region of attraction is the whole space \mathbb{R}^n

Two-dimensional Systems (n = 2)

Type of equilibrium point	Stability Property
Center	
Stable Node	
Stable Focus	
Unstable Node	
Unstable Focus	
Saddle	

Example: Tunnel Diode Circuit

Example: Pendulum Without Friction

The forward orbit from (0.0084, 1.7) --> a nearly closed orbit.

The backward orbit from (0.0084, 1.7) --> a nearly closed orbit.

Example: Pendulum With Friction

Linear Time-Invariant Systems

$$\dot{x} = Ax$$

$$x(t) = \exp(At)x(0)$$

$$P^{-1}AP = J = \text{block diag}[J_1, J_2, \dots, J_r]$$

$$J_i = \begin{bmatrix} \lambda_i & 1 & 0 & \dots & 0 \\ 0 & \lambda_i & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & 0 & \lambda_i \end{bmatrix}_{m \times m}$$

$$\exp(At) = P \exp(Jt) P^{-1} = \sum_{i=1}^{r} \sum_{k=1}^{m_i} t^{k-1} \exp(\lambda_i t) R_{ik}$$

 m_i is the order of the Jordan block J_i

$$\operatorname{Re}[\lambda_i] < 0 \ \ \forall \ i \ \ \Leftrightarrow \ \ \text{Asymptotically Stable}$$

$$\operatorname{Re}[\lambda_i] > 0$$
 for some $i \Rightarrow \mathsf{Unstable}$

$$\operatorname{Re}[\lambda_i] \leq 0 \ \ \forall \ i \ \& \ m_i > 1 \ \text{for} \ \ \operatorname{Re}[\lambda_i] = 0 \ \Rightarrow \ \ \ \mathsf{Unstable}$$

$$\operatorname{Re}[\lambda_i] \leq 0 \ \ \forall \ i \ \& \ m_i = 1 \ \text{for} \ \ \operatorname{Re}[\lambda_i] = 0 \ \Rightarrow \ \ \mathsf{Stable}$$

If an $n \times n$ matrix A has a repeated eigenvalue λ_i of algebraic multiplicity q_i , then the Jordan blocks of λ_i have order one if and only if $\operatorname{rank}(A - \lambda_i I) = n - q_i$

Theorem 3.1

The equilibrium point x=0 of $\dot{x}=Ax$ is stable if and only if all eigenvalues of A satisfy $\mathrm{Re}[\lambda_i] \leq 0$ and for every eigenvalue with $\mathrm{Re}[\lambda_i] = 0$ and algebraic multiplicity $q_i \geq 2$, $\mathrm{rank}(A-\lambda_i I) = n - q_i$, where n is the dimension of x. The equilibrium point x=0 is globally asymptotically stable if and only if all eigenvalues of A satisfy $\mathrm{Re}[\lambda_i] < 0$

When all eigenvalues of A satisfy $\operatorname{Re}[\lambda_i] < 0$, A is called a *Hurwitz matrix*

When the origin of a linear system is asymptotically stable, its solution satisfies the inequality

$$||x(t)|| < k||x(0)||e^{-\lambda t}, \quad \forall \ t > 0, \quad k > 1, \ \lambda > 0$$

Exponential Stability

Definition 3.3

The equilibrium point x = 0 of $\dot{x} = f(x)$ is exponentially stable if

$$||x(t)|| \le k||x(0)||e^{-\lambda t}, \quad \forall \ t \ge 0$$

$$k \ge 1, \ \lambda > 0$$
, for all $||x(0)|| < c$

It is globally exponentially stable if the inequality is satisfied for any initial state x(0)

Exponential Stability \Rightarrow Asymptotic Stability

Example 3.2

$$\dot{x} = -x^3$$

The origin is asymptotically stable

$$x(t) = \frac{x(0)}{\sqrt{1 + 2tx^2(0)}}$$

x(t) does not satisfy $|x(t)| \leq ke^{-\lambda t}|x(0)|$ because

$$|x(t)| \le ke^{-\lambda t}|x(0)| \Rightarrow \frac{e^{2\lambda t}}{1 + 2tx^2(0)} \le k^2$$

Impossible because
$$\lim_{t\to\infty}\frac{e^{2\lambda t}}{1+2tx^2(0)}=\infty$$

Linearization

$$\dot{x} = f(x), \quad f(0) = 0$$

f is continuously differentiable over $D = \{||x|| < r\}$

$$J(x) = \frac{\partial f}{\partial x}(x)$$

$$h(\sigma) = f(\sigma x)$$
 for $0 \le \sigma \le 1$, $h'(\sigma) = J(\sigma x)x$

$$h(1) - h(0) = \int_0^1 h'(\sigma) \ d\sigma, \quad h(0) = f(0) = 0$$

$$f(x) = \int_0^1 J(\sigma x) \ d\sigma \ x$$

$$f(x) = \int_0^1 J(\sigma x) \ d\sigma \ x$$

Set A = J(0) and add and subtract Ax

$$f(x) = [A + G(x)]x$$
, where $G(x) = \int_0^1 [J(\sigma x) - J(0)] d\sigma$

$$G(x) \to 0$$
 as $x \to 0$

This suggests that in a small neighborhood of the origin we can approximate the nonlinear system $\dot{x}=f(x)$ by its linearization about the origin $\dot{x}=Ax$

Theorem 3.2

- The origin is exponentially stable if and only if $Re[\lambda_i] < 0$ for all eigenvalues of A
- The origin is unstable if $Re[\lambda_i] > 0$ for some i

Linearization fails when $\operatorname{Re}[\lambda_i] \leq 0$ for all i, with $\operatorname{Re}[\lambda_i] = 0$ for some i

Example 3.3

$$\dot{x} = ax^3$$

$$A = \left. \frac{\partial f}{\partial x} \right|_{x=0} = 3ax^2 \Big|_{x=0} = 0$$

Stable if a = 0; Asymp stable if a < 0; Unstable if a > 0

When a < 0, the origin is not exponentially stable